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THE MATHEMATICS OF A GAME
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¢ƘŜ wǳōƛƪΩǎ {ƭƛŘŜ
σ σelectronic board ς9 blocks

3 pairs of pre-defined transformations/moves

Game starts with an initial configuration and 
shows you an end configuration.

Objective is to utilize the transformations to 
navigate from initial configto end config.

In competitive play the player who achieves 
the outcome in the least amount of moves, wins.
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¢ƘŜ wǳōƛƪΩǎ {ƭƛŘŜ
Michael Jones, an advisor to my research, B.C. 
Shelton and M.E. Weaverdyckoriginally published 
an analysis of this game, On God's Number for 
Rubik's Slide. 

In addition, Alm, Gramelspacher, and Rice 
published an analysis in the American 
Mathematical Monthly, Rubik'son a Torus.

My research will involve a theoretical τ τ
version of the game, which has not yet been 
ǇǊƻŘǳŎŜŘ ōȅ ǘƘŜ wǳōƛƪΩǎ /ƻƳǇŀƴȅΦ
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Toy Version
Before a full analysis of the τ τversion of the 
game we want to become acquainted with the 
rules and mathematical tools available to study 
this game.

/ǊŜŀǘŜ ŀ ά¢ƻȅέ ǾŜǊǎƛƻƴ ƻŦ ŘƛƳŜƴǎƛƻƴ ς ς.

Convenient for explaining rules.

Useful for developingand practicing relevant     
tools in an easier environment. 
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The Rules
1. You are given an initial configuration ςa 

set of boxes that are colored one or more 
colors.

2. You are given a final configuration ςa set 
of boxes with the same amount of colored 
boxes but in a different position.

3. There are 6 transformations you are 
allowed to make.

4. An ordered sequence (most likely not 
unique) of these transformations should be 
implemented to achieve the final 
configuration.
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Initial Configuration

Final Configuration



3 Pairs of Transformations

üRight shift / Left shift

üUp shift / Down shift

üωπЈClockwise shift / Counterclockwise shift

Notation: We will refer to these transformation as 
ὙȟὙ ȟὟȟὟ ȟὅȟὅ
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Initial Configuration

Final Configuration



Transformation ςRight/Left
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Initial Configuration

Right shift

Left shift

Observe that both transformations are the same in the  ς ςtoy version.



Transformation ςUp/Down
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Initial Configuration

Up shift

Down shift

Observe that both transformations are the same in the  ς ςtoy version.



Transformation ςClockwise/CC
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Initial Configuration

ЈClockwise shift

ЈCounterclockwise shift



Example Game Play 1
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Initial Final



Example Game Play 1
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Initial Final

C



Example Game Play 1
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Initial Final

C C



Example Game Play 2
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Initial Final



Example Game Play 2
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Initial Final

R



Example Game Play 2
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Initial Final

R U



Permutation Notation
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R
Ὑ

ρ ς
ς ρ

σ τ
τ σ

Instead of using colors, for ease of reference, let us label each location on our board a number 
and define our initial configuration as the first row 1,2 and the second row 3,4, respectively.

Using permutation notation we can represent each transformation using our initial 
configuration as a reference point.



U
Ὗ

ρ ς
σ τ

σ τ
ρ ς

Permutation Notation
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Instead of using colors, for ease of reference, let us label each location on our board a number 
and define our initial configuration as the first row 1,2 and the second row 3,4, respectively.

Using permutation notation we can represent each transformation using our initial 
configuration as a reference point.



C
ὅ

ρ ς
ς τ

σ τ
ρ σ

Permutation Notation
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Instead of using colors, for ease of reference, let us label each location on our board a number 
and define our initial configuration as the first row 1,2 and the second row 3,4, respectively.

Using permutation notation we can represent each transformation using our initial 
configuration as a reference point.



Permutation Composition
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C

ὅὙ
ρ ς
ς τ

σ τ
ρ σ

ρ ς
ς ρ

σ τ
τ σ

ρ ς
ρ σ

σ τ
ς τ

R

Note: Permutation composition usually occurs right to left but for the benefit of game 
notation the operation will go left to right.



Permutation Composition
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C

ὅὅὙ
ρ ς
ς τ

σ τ
ρ σ

ρ ς
ρ σ

σ τ
ς τ

ρ ς
σ τ

σ τ
ρ ς

C R



Naming Configurations
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ὅὙ
ρ ς
σ τ

σ τ
ρ ς

ḈὟ ὅὙ

For convenience it is important to develop a naming system for all of the possible 
configurations. The first step in this process is to make an important connection between 
the relationship of two specific elements.

Recall that

U
Ὗ

ρ ς
σ τ

σ τ
ρ ς

and



Naming Configurations
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This is useful information because it tells us that the transformation Ὗis really just 
a composition of transformations involving ὅand Ὑ. We can write all configurations 
in terms of ὅand Ὑwithout using Ὗ. This is not to discount the value of Ὗin our 
game, which we will see throughout, but as a means to develop a simple naming 
system for our configurations.

We see through inspection that the following 8 configurations are the only possible 
configurations given our initial transformation rules.

ὍȟὙȟὅȟὅὙȟὅȟὅὙȟὅȟὅὙ

Note: These configurations can be written in many ways and could even utilize the U 
transformation but it is beneficial to pick one convention and use it throughout the analysis.



ὍȟὙȟὅȟὅὙȟὅȟὅὙȟὅȟὅὙ
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The Rubik Slide is an Algebraic Group
An algebraic group is a set of elements paired with a binary operation that have the following 
properties for all elements in the group.

1. The set of elements must contain an identity element.

2. The operation on the elements must be associative.

3. Every element in the set must have an inverse in the set.

4. The set must be closed, which means that the result of pairing any two elements within the 
set with the defined operation results in an element that exists within the same set.
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The Rubik Slide is an Algebraic Group
An algebraic group is a set of elements paired with a binary operation that have the following 
properties for all elements in the group.

1. The set of elements must contain an identity element.

2. The operation on the elements must be associative.

3. Every element in the set must have an inverse in the set.

4. The set must be closed, which means that the result of pairing any two elements within the 
set with the defined operation results in an element that exists within the same set.

Note: You have studied groups your entire life, think about the set of Integers (ᴚ paired with the 
operation addition (+). 
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The Rubik Slide is an Algebraic Group
An algebraic group is a set of elements paired with a binary operation that have the following 
properties for all elements in the group.

1. The set of elements must contain an identity element. 0 is the identity

2. The operation on the elements must be associative. 

3. Every element in the set must have an inverse in the set. 

4. The set must be closed, which means that the result of pairing any two elements within the 
set with the defined operation results in an element that exists within the same set. 

Note: You have studied groups your entire life, think about the set of Integers (ᴚ paired with the 
operation addition (+). 
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The Rubik Slide is an Algebraic Group
An algebraic group is a set of elements paired with a binary operation that have the following 
properties for all elements in the group.

1. The set of elements must contain an identity element. 0 is the identity

2. The operation on the elements must be associative. Associative Property of Addition

3. Every element in the set must have an inverse in the set. 

4. The set must be closed, which means that the result of pairing any two elements within the 
set with the defined operation results in an element that exists within the same set. 

Note: You have studied groups your entire life, think about the set of Integers (ᴚ paired with the 
operation addition (+). 
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The Rubik Slide is an Algebraic Group
An algebraic group is a set of elements paired with a binary operation that have the following 
properties for all elements in the group.

1. The set of elements must contain an identity element. 0 is the identity

2. The operation on the elements must be associative. Associative Property of Addition

3. Every element in the set must have an inverse in the set. Negative & positive integers are 
inverses of each other.

4. The set must be closed, which means that the result of pairing any two elements within the 
set with the defined operation results in an element that exists within the same set. 

Note: You have studied groups your entire life, think about the set of Integers (ᴚ paired with the 
operation addition (+). 
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The Rubik Slide is an Algebraic Group
An algebraic group is a set of elements paired with a binary operation that have the following 
properties for all elements in the group.

1. The set of elements must contain an identity element. 0 is the identity

2. The operation on the elements must be associative. Associative Property of Addition

3. Every element in the set must have an inverse in the set. Negative & positive integers are 
inverses of each other.

4. The set must be closed, which means that the result of pairing any two elements within the 
set with the defined operation results in an element that exists within the same set. Add any 
two integers and the result is always another integer.

Note: You have studied groups your entire life, think about the set of Integers (ᴚ paired with the 
operation addition (+). 
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The Rubik Slide is an Algebraic Group
An algebraic group is a set of elements paired with a binary operation that have the following 
properties for all elements in the group.

1. The set of elements must contain an identity element, which is our initial configuration.

Ὅ
ρ ς
ρ ς

σ τ
σ τ

Example

ὍɇὟ
ρ ς
ρ ς

σ τ
σ τ

ρ ς
σ τ

σ τ
ρ ς

Ὗ
ρ ς
σ τ

σ τ
ρ ς

ρ ς
ρ ς

σ τ
σ τ

ὟɇὍ
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The Rubik Slide is an Algebraic Group
An algebraic group is a set of elements paired with a binary operation that have the following 
properties for all elements in the group.

2. The operation on the elements must be associative. 

Example:
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ὅὅὙ ὅὙ
ρ ς
τ σ

σ τ
ς ρ

ρ ς
ς ρ

σ τ
τ σ

ρ ς
σ τ

σ τ
ρ ς

ὅὅὙ
ρ ς
ς τ

σ τ
ρ σ

ρ ς
ρ σ

σ τ
ς τ

ρ ς
σ τ

σ τ
ρ ς

ḈὅὅὙ ὅὅὙ



The Rubik Slide is an Algebraic Group
An algebraic group is a set of elements paired with a binary operation that have the following 
properties for all elements in the group.

3. Every element in the set must have an inverse in the set.

The inverse of Ὑis Ὑ.

ὙɇὙ
ρ ς
ς ρ

σ τ
τ σ

ρ ς
ς ρ

σ τ
τ σ

ρ ς
ρ ς

σ τ
σ τ

Ὅ
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The Rubik Slide is an Algebraic Group
An algebraic group is a set of elements paired with a binary operation that have the following 
properties for all elements in the group.

3. Every element in the set must have an inverse in the set.

The inverse of ὅis ὅȢ

ὅɇὅ
ρ ς
ς τ

σ τ
ρ σ

ρ ς
σ ρ

σ τ
τ ς

ρ ς
ρ ς

σ τ
σ τ

Ὅ
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The Rubik Slide is an Algebraic Group
An algebraic group is a set of elements paired with a binary operation that have the following 
properties for all elements in the group.

3. Every element in the set must have an inverse in the set.

The inverse of #Ὑis #Ὑ.

ὅὙɇὅὙ
ρ ς
ρ σ

σ τ
ς τ

ρ ς
ρ σ

σ τ
ς τ

ρ ς
ρ ς

σ τ
σ τ

Ὅ

*You will have an opportunity to find the remaining inverses as in Exercises 1.
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The Rubik Slide is an Algebraic Group
An algebraic group is a set of elements paired with a binary operation that have the following 
properties for all elements in the group.

4. The set must be closed, which means that the result of pairing any two elements within the 
set with the defined operation results in an element that exists within the same set.

Take any configuration and perform a transformation and the result is another configuration      
that is a part of the set of possible configurations. We observed this when we originally 
generated all of the configurations of this group.
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The Toy Version is the Ὀ Group
Now that we have observed that the Toy Version of the Rubik Slide is an algebraic group we can 
identify which group it exactly is. The Toy Version is the dihedral group of order 8, written as Ὀ .

We will now focus on the structure of this group and how to navigate through the 
configurations. Recall from an earlier slide that the configurations of the Toy Version are the 8 
elements,

These 8 elements of this group are generated by Ὑand ὅ.
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ὍȟὙȟὅȟὅὙȟὅȟὅὙȟὅȟὅὙ



Graphing the Toy Version
Utilizing graph theory terminology we can refer to each element of the group as a vertex and the 
connections between each vertex is an edge. Edges represent the transformations that generate 
our group, namely Ὑȟὅ.

To draw this graph, we need to choose a starting element (choose the identity element Ὅ) and 
then draw the vertices that are connected to it by the transformations Ὑand ὅ. Do this for every 
element you connect with until you exhaust all possible options. If we keep track of the direction 
of the edges along with which transformation we used then what we have created is called a 
Cayley Graph.

Note: This is a Cayley Graph specific to our group. For a detailed definition of a Cayley Graph see Appendix A.
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ὍȟὙȟὅȟὅὙȟὅȟὅὙȟὅȟὅὙ



Cayley Graphs
Displayed are two possible Cayley graphs the first generated only by Ὑand ὅ, the second graph 
is generated by Ὑȟὅȟand Ὗ ὅὙ.
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Cayley Graphs
Displayed are two possible Cayley graphs the first generated only by Ὑand ὅ, the second graph 
is generated by Ὑȟὅȟand Ὗ ὅὙ.
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8 vertices
12 edges

8 vertices
16 edges



Hamiltonian Cycle
Another interesting property we would like to search for is the existence of a Hamiltonian cycle, 
which is a Hamiltonian path that ends at your initial starting point. A Hamiltonian path is a 
sequence of transformations that walks you through every vertex exactly once.

A reason that a Hamiltonian cycle is of interest is because if we can identify this path then we 
have found a sequence of transformations that allows us to travel through every possible 
configuration.

Hamiltonian cycles can be difficult to find as your amount of vertices grows larger. In addition, it 
is considered to be a challenging problem for even a computer to solve within a reasonable 
amount of time.
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Hamiltonian Cycle
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If you start at any configuration and proceed with the following sequence of transformations you 
will travel through every vertex of the graph.



Hamiltonian Cycle
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If you start at any configuration and proceed with the following sequence of transformations you 
will travel through every vertex of the graph.

Ὄ ὅȟὅȟὅȟὙȟὅȟὅȟὅȟὙ



Hamiltonian Cycle    Ὄ ὅȟὅȟὅȟὙȟὅȟὅȟὅȟὙ
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We can confirm this using algebra and also by inspecting the Cayley graph.

ὅὅὅὙὅὅὅὙὅὙὅὙ
ὅὙὅὙ
Ὅ



hƴ DƻŘΩǎ bǳƳōŜǊ
¢ƘŜ ǘŜǊƳ DƻŘΩǎ ƴǳƳōŜǊ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ŎƻƴŎŜǇǘ ǘƘŀǘ ƛŦ ŀƴ ƻƳƴƛǎŎƛŜƴǘ ōŜƛƴƎ ǿŜǊŜ ǘƻ Ǉƭŀȅ ŀ ƎŀƳŜΣ 
it would be played by utilizing the least amount of transformations to reach any configuration 
from some initial configuration.

Lƴ ƎǊŀǇƘ ǘƘŜƻǊȅ ǘŜǊƳƛƴƻƭƻƎȅΣ DƻŘΩǎ ƴǳƳōŜǊΣ ƛǎ ǘƘŜ ƭŜŀǎǘ distancebetween any two vertices 
within a graph, in which distance means the number of edges you travel between two vertices. 
This is referred to as the distance of a graph.

By utilizing all transformations it is easy to inspect the Cayley graph of a small graph and 
ŘŜǘŜǊƳƛƴŜ DƻŘΩǎ ƴǳƳōŜǊΦ  ¢ƘŜ ǇǳǊǇƻǎŜ ƻŦ ǘƘŜ ¢ƻȅ ǾŜǊǎƛƻƴΣ ǘƘƻǳƎƘΣ ƛǎ ǘƻ ŘŜǾŜƭƻǇ ǘƻƻƭǎ ŦƻǊ ƭŀǊƎŜǊ 
groups so we will observe multiple methods to discover this distance value of a graph.
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hƴ DƻŘΩǎ bǳƳōŜǊ ςCayley Graph
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Observe that from element Ὅyou can reach 
half of the set of elements.
With one more transformation the 
remaining elements are all reachable.
¢ƘŜ ŘƛǎǘŀƴŎŜ ƻŦ ǘƘŜ ƎǊŀǇƘ όƛΦŜΦ DƻŘΩǎ 
number) is 2.



hƴ DƻŘΩǎ bǳƳōŜǊ ςStrongly 4-Regular

11/5/2015 46

!ƴƻǘƘŜǊ ǿŀȅ ǘƻ ƻōǎŜǊǾŜ DƻŘΩǎ ƴǳƳōŜǊ ƛǎ ōȅ ǳǎƛƴƎ 
two graph properties of the Toy version.

Graph Property 1
The Toy version is a strongly 4-regulargraph

regularmeans that every vertex has the same 
degree (adjacent vertices, 4) 
strongly regular means

every two adjacent vertices share the same 
number of common vertices (1) 
every two non-adjacent vertices share the 
same amount of common vertices (4).



hƴ DƻŘΩǎ bǳƳōŜǊ ςStrongly 4-Regular
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Graph Property 1
The Toy version is a strongly 4-regulargraph

regularmeans that every vertex has the same 
degree (adjacent vertices, 4) 
strongly regular means

every two adjacent vertices share the same 
number of common vertices (1) 
every two non-adjacent vertices share the 
same amount of common vertices (4).

!ƴƻǘƘŜǊ ǿŀȅ ǘƻ ƻōǎŜǊǾŜ DƻŘΩǎ ƴǳƳōŜǊ ƛǎ ōȅ ǳǎƛƴƎ ǘǿƻ ƎǊŀǇƘ ǇǊƻǇŜǊǘƛŜǎ ƻŦ ǘƘŜ ¢ƻȅ ǾŜǊǎƛƻƴΦ

Graph Property 2
Every strongly regular graph that have 
two non-adjacent vertices that share 
at least 1 common vertex have a 
distanceof 2. 



hƴ DƻŘΩǎ bǳƳōŜǊ ςBipartite Graph
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We can also classify the Toy version as a bipartite 
graph. A bipartite graph is a graph that consists of 
two disjoint sets of vertices where each set 
contains only non-adjacent vertices.

This is visually the easiest way to observe the 
distance of thisgraph. Notice that you reach any 
non-adjacent vertex by way of two simple 
transformations to anyadjacent vertex then to the 
desired non-adjacent vertex.



hƴ DƻŘΩǎ bǳƳōŜǊ ςAdjacency Matrix
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(0,1)-adjacency matrices also provide a useful means to determining the distance of a graph 
and this tool will be utilized heavily on the extended τὼτversion of the Rubik Slide.

To build an adjacency matrix
1. Each row and column represent an element in the group. 
2. The Toy version has 8 rows and 8 columns. 
3. Every entry will receive either a 0 or 1
4. If the two elements do not share an edge (non-adjacent) then enter 0.
5. If the two elements share an edge (adjacent, neighbor) then enter 1. 
6. The diagonal of the matrix (an element paired with itself) receives 0.



hƴ DƻŘΩǎ bǳƳōŜǊ ςAdjacency Matrix
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We can use the convenient bipartite graph to build our matrix, ὃȢ



hƴ DƻŘΩǎ bǳƳōŜǊ ςAdjacency Matrix
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We can use the convenient bipartite graph to build our adjacency matrix, ὃȢ



hƴ DƻŘΩǎ bǳƳōŜǊ ςAdjacency Matrix
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Interpret Data and Apply
1 represents a single walk (transformation) 
along an edge 
The diagonal of matrix ὃŎƻƴǘŀƛƴǎ ŀƭƭ лΩǎ 
π ύὥὰὯis the initial start of  the game 
before any transformations
π ύὥὰὯὃ
ὃ Ὅthe identity matrix, a matrix of all 
лΩǎ ǿƛǘƘ мΩǎ ŀƭƻƴƎ ǘƘŜ ŘƛŀƎƻƴŀƭ



hƴ DƻŘΩǎ bǳƳōŜǊ ςAdjacency Matrix
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Interpret Data and Apply
1 represents a single walk (transformation) 
along an edge 
The diagonal of matrix ὃŎƻƴǘŀƛƴǎ ŀƭƭ лΩǎ 
π ύὥὰὯis the initial start of  the game 
before any transformations
π ύὥὰὯὃ
ὃ Ὅthe identity matrix, a matrix of all 
лΩǎ ǿƛǘƘ мΩǎ ŀƭƻƴƎ ǘƘŜ ŘƛŀƎƻƴŀƭ

Objective 
Find the least amount of walks required to 
connect to every vertex.
OŎŎǳǊǎ ǿƘŜƴ ƴƻ лΩǎ ŜȄƛǎǘ ƛƴ ǘƘŜ ƳŀǘǊƛȄΦ
The ὲ ύὥὰὯis the degree of the 
polynomial expression that represents that 
walk.
The value of ὲis the dimension of the 
ƎǊŀǇƘ όƛΦŜΦ DƻŘΩǎ ƴǳƳōŜǊΦύ



hƴ DƻŘΩǎ bǳƳōŜǊ ςAdjacency Matrix
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π ύὥὰὯὃ Ὅ
ρ ύὥὰὯὍ ὃ

Objective 
Find the least amount of walks required to 
connect to every vertex.
OŎŎǳǊǎ ǿƘŜƴ ƴƻ лΩǎ ŜȄƛǎǘ ƛƴ ǘƘŜ ƳŀǘǊƛȄΦ
The ὲ ύὥὰὯis the degree of the 
polynomial expression that represents that 
walk.
The value of ὲis the dimension of the 
ƎǊŀǇƘ όƛΦŜΦ DƻŘΩǎ ƴǳƳōŜǊΦύ



hƴ DƻŘΩǎ bǳƳōŜǊ ςAdjacency Matrix

11/5/2015 55

π ύὥὰὯὃ Ὅ
ρ ύὥὰὯὍ ὃ
ς ύὥὰὯὍ ὃ ὃ

Objective 
Find the least amount of walks required to 
connect to every vertex.
OŎŎǳǊǎ ǿƘŜƴ ƴƻ лΩǎ ŜȄƛǎǘ ƛƴ ǘƘŜ ƳŀǘǊƛȄΦ
The ὲ ύὥὰὯis the degree of the 
polynomial expression that represents that 
walk.
The value of ὲis the dimension of the 
ƎǊŀǇƘ όƛΦŜΦ DƻŘΩǎ ƴǳƳōŜǊΦύ



hƴ DƻŘΩǎ bǳƳōŜǊ ςAdjacency Matrix
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π ύὥὰὯὃ Ὅ
ρ ύὥὰὯὍ ὃ
ς ύὥὰὯὍ ὃ ὃ

◌╪■▓╘ ═ ═

Objective 
Find the least amount of walks required to 
connect to every vertex.
OŎŎǳǊǎ ǿƘŜƴ ƴƻ лΩǎ ŜȄƛǎǘ ƛƴ ǘƘŜ ƳŀǘǊƛȄΦ
The ὲ ύὥὰὯis the degree of the 
polynomial expression that represents that 
walk.
The value of ὲis the dimension of the 
ƎǊŀǇƘ όƛΦŜΦ DƻŘΩǎ ƴǳƳōŜǊΦύ

Results 
ς ύὥὰὯὍ ὃ ὃ first occurrence of 
ǿƘŜƴ ƴƻ лΩǎ ŜȄƛǎǘ ƛƴ ǘƘŜ ƳŀǘǊƛȄΦ
Dimension of graph is 2



wǳōƛƪΩǎ {ƭƛŘŜ τὼτEasy Version
Theoretical game not currently manufactured.

Similar transformations to the Toy Version.

Right / Left

Up / Down

Easy 

Clockwise ωπЈ/ Counterclockwise ωπЈ

ὅ Ὅ

Hard

Clockwise σπЈ/ Counterclockwise σπЈ

ὅ Ὅ

Easy σὼσversion uses one color

For richer analysis we will analyze 16 colors.
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3 Pairs of Transformations

üRight shift / Left shift

üUp shift / Down shift

üωπЈClockwise shift / Counterclockwise shift

üObjective: Using transformations navigate from 
initial configuration to final configuration.

Notation: We will refer to these transformation as 
ὙȟὙ ȟὟȟὟ ȟὅȟὅ
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Initial Configuration

Final Configuration



Transformation ςRight/Left
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Initial Configuration

╡ Right shift

╡ ╡
Left shift

Observe that both transformations are the same in the  ς ςtoy version.



Transformation ςUp/Down
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Initial Configuration

╤ Up shift

╤ ╤
Down shift

Observe that both transformations are the same in the  ς ςtoy version.



Transformation ςClockwise/CC
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Initial Configuration

╒ Clockwise shift

╒ ╒
Counterclockwise shift

Observe that both transformations are the same in the  ς ςtoy version.



Example Game Play 1
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Initial Final



Example Game Play 1
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Initial Final

╒



Example Game Play 1
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Initial Final

╒ ╤



Example Game Play 1
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Initial Final

╒ ╤

╡ ╤



Example Game Play 2
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Initial Final


